
Ingeniería de Software - Clase 6

Editorial label ECORFAN: 607-8695

BCONIMI Control Number: 2020-31
BCONIMI Classification (2020): 120320-0031

Pages: 32

RNA: 03-2010-032610115700-14

www.ecorfan.org

ECORFAN-México, S.C.

143 – 50 Itzopan Street
La Florida, Ecatepec Municipality

Mexico State, 55120 Zipcode

Phone: +52 1 55 6159 2296

Skype: ecorfan-mexico.s.c.

E-mail: contacto@ecorfan.org

Facebook: ECORFAN-México S. C.

Twitter: @EcorfanC

Holdings

Mexico Colombia Guatemala

Bolivia         Cameroon Democratic

Spain El Salvador Republic

Ecuador         Taiwan of Congo

Peru Paraguay          Nicaragua

RENIECYT - LATINDEX - Research  Gate - DULCINEA  - CLASE  - Sudoc - HISPANA  - SHERPA UNIVERSIA - Google Scholar DOI - REDIB - Mendeley - DIALNET - ROAD - ORCID

Author: PADILLA, Efraín, TORRES-ROMÁN, Deni Librado y MÉNDEZ-VÁZQUEZ, Andrés

International Multidisciplinary Engineering Congress

Booklets

Title: Noise analysis using Tucker Decomposition and PCA on spectral images



Content

1. Introduction

2. Problems

3. Noise assumptions

4. Compression

5. Phenomenology observed

6. Experiment

7. Conclusions

8. References
2



Introduction

Spectral Image (SI) definition:

• The greek word “spectral,” which relates
to “colors”, combined with image
figuratively mean “Image of colors.”

• Is based on taking a portion of the
electromagnetic spectrum and breaking it
into pieces for the purpose of analytical
computations. [1]

• We represent the SI as a tensor.
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Fig.1 – HSI example 



Tensor

• A tensor is a multidimensional array. The order
of a tensor is the number of its dimensions,
also called the ways or modes; therefore an
𝑁th-order is an array with 𝑁 dimensions. [2]
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Notation

Fig.2 - Example of a 3rd-order tensor 



Tensor Examples
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Fig.3 – Tensor Examples 



SI Representation

• We represent a SI as a 3rd-order tensor
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Where ℎ, 𝑤 and 𝑏 are the number of pixels (elements) in 
each Mode-1 (column), Mode-2 (row) and Mode-3 (tube) fibers respectively.

Fig.4 – SI



Problems
A spectral image contains
abundant spatial and spectral
information and is always
corrupted by various noises,
especially Gaussian noise. [3]
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Problems
Noise is a problem in spectral
imagery applications.

The performance of spectral
analysis tasks (i.e. Classification)
depends of the SNR of he spectral
image. [4]
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Before deal with the Noise…
We need to know about him.



Noise Assumptions [4]

• The presence of different noise sources in a SI makes its modeling 
and the denoising task very challenging
• Therefore, SI denoising approaches often consider either of the following noise 

types or a mixture of them.
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Noise Assumptions [4]

• Signal Independent Noise
• Thermal noise and quantization noise in HSI are modeled by signal 

independent Gaussian additive noise. Usually, noise is assumed to be 
uncorrelated spectrally. The Gaussian assumption has been broadly used in 
hyperspectral analysis since it considerably simplifies the analysis and the noise 
variance estimation.

• Sparse Noise
• Impulse noises such as salt and pepper noise, missing pixels, missing lines and 

other outliers often exist in the acquired HSI, and are usually due to a 
malfunctioning of the sensor.

• Pattern Noise
• Hyperspectral imaging systems may also induce artifacts in hyperspectral 

images, usually referred to as pattern noise.
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Additive Noise

• Generally, in the state of the art can be
found many ways to get:

• Where:
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Fig.4 – SI
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To deal with the size of the data… 
Compression methods!



PCA

• Is a dimensionality reduction method, that is often used to reduce the 
dimensionality of large data sets, by transforming a large set of variables 
into smaller one that still contains most of the information in the large
dataset.
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Fig.5 – PCA example



Tucker Tensor Decomposition

• Is a form of Higher Order of PCA. It decomposes a tensor into a core tensor multiplied 
(or transformed) by a matrix along each mode. Thus, in the three-way case where

we have.  [2]

• To do compression only in the spectral domain we can make 𝑨,𝑩 = 𝑰 (For semantic 
segmentation purposes)
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Fig.6 – Tucker Decomposition of a 
three way array



Phenomenology observed in [16]
Accuracy improvement after compression 
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Normally after a dataset compression stage we expect a loss of 
information and consequently a worse accuracy in classification 
tasks, but in this work the accuracy improve in some cases! WHY?

Fig.7 – Framework proposed in [16]



Experiment

Analyze the images and its 
classification accuracy through a 
Neural Network after PCA and 
Tucker compression 
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SI Dataset [16]
Real Dataset with simulated noise

• We used a Sentinel-2 image data set of 115 scenes of (128x128x9) from 
Central Europe (already with “natural” noise) with simulated additive 
noise as a case study, can be generated by zero-mean Gaussian noise as 
seen in [4]

• The variance of the noise 𝜎𝑖
2 variates along the spectral axis according to
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Where the power of the noise is controlled by 𝜎, and 𝜂
behaves like the standard deviation of a Gaussian bell curve.
𝑝 is the number of bands which is 9.



First Look

With 𝜎 = 13 and 𝜂 = 72, scene = 50 , band = 1
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RGB Reference Image Band 1 – Original Band 1 – Noise added 

Fig.7 –Noise adding to scene 50 – Visualization of band 1



First Look

With 𝜎 = 13 and 𝜂 = 72, scene = 50 , band = 1

C𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑡𝑜 3 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 (𝑃𝐶𝐴)/𝑡𝑒𝑛𝑠𝑜𝑟𝑖𝑎𝑙 𝑏𝑎𝑛𝑑𝑠 (𝑇𝑢𝑐𝑘𝑒𝑟)
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Band 1 – Original Band 1 – Noise added 

After PCA 

After Tucker Decomposition Fig.8 –Visualization of compressed images of a noisy band



Noise parameters [17]
Real Dataset with simulated noise

• We set an average SNR (Signal to Noise Ratio) of 
17dB. We get this with 𝜎 = 82, 𝑆𝑁𝑅𝑎𝑣𝑒 = 17𝑑𝐵

• The experiment were performed with different 
values of 𝜂 = 18, 36, 72
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Experiment

Fig.9 – Experiment workflow



Multi-Layer Perceptron [18]
Artificial Neural Network as Classifier

• Parameters:
• Hidden Layers: 2, Neurons per layer: 100

• Activation function: ReLu

• Solver for weight optimization: ADAM

• Regularization term: L2 penalty

• Batch size: 200

• Learning rate: Adaptative

• Iterations: 10

• Train 70%/Test 30% picked random

• Data dimensions (vectorized) = (1,884,160 x PrincipalComponents) [PCA]

= (1,884,160 x TensorialBands) [Tucker]
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Fig.9 – MLP Example



Accuracy Analysis – No Noise Added
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Accuracy Analysis – Noise Added: 𝜎 = 82 and 𝜂 = 16

25

0.5

0.55

0.6

0.65

0.7

0.75

8 7 6 5 4 3 2 1

A
cc

u
ra

cy

To Components/Tensorial Bands compressed

Accuracy-PCA Accuracy-Tucker



Accuracy Analysis – Noise Added: 𝜎 = 82 and 𝜂 = 36
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Accuracy Analysis – Noise Added: 𝜎 = 82 and 𝜂 = 72
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Conclusions

• An experiment was proposed to observe the behavior of the classification accuracy after 
compression methods.

• We can observe that the accuracy generally increment compressing to 6 or 7 bands 
instead of 8 with Tucker Decomposition.

• We can attribute that the information in this less significative bands is in its majority noise.

• Lower SNR minimize this phenomenon.

• Tucker Decomposition generally perform better compression than PCA.

• To improve the classifier to get higher accuracies and maximize this phenomenology.

• Compare with a noise-free spectral image.
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Future Work
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Backup

• Signal dependent Noise [4]
• Shot (photon) noise in HSI is modeled by the Poisson distribution for which the noise variance is signal 

dependent. The noise variance estimation under this assumption is more challenging than in the signal 
independent case.

• The generic Hyperspectral pixel       can be viewed as an (         being the number of sensor 
channels) modeled as 



Backup - SNR

Evaluate Restoration Results
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